
Shannon J. Bushy: Certified Filtrexx Installer, Project Manager
John Wesley Allen: Certified Construction Reviewer (CCR), Director of Operations
Envirotech Environmental Consulting, Inc. (EECI), Milton, Delaware

Introduction

The Filtrexx FilterCell™ filtration system is a temporary or permanent water or stormwater filtration system used to remove sediment and/or soluble pollutants. This portable Land Improvement System (LIS) uses organic GrowingMedia™ and native vegetation to remove pollutants from water and stormwater before it is discharged into collection ponds, wetlands, infiltration basins, fields, or receiving waters.

This innovative filtration system utilizes a mesh-like “sock” and an all-organic fill material in conjunction with native vegetation and proprietary flowcells to filter point and non-point runoff sources. Flowcells are prescribed on a site-specific basis to remove target pollutants from contaminated water and stormwater flows. Filtrexx® FilterCell™ technology used in conjunction with proprietary flowcells, have demonstrated the following pollutant removal levels.

<table>
<thead>
<tr>
<th>Target Pollutant</th>
<th>Percent (%) Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum Products</td>
<td>99%</td>
</tr>
<tr>
<td>Bacteria</td>
<td>99%</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>92%</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>25-33%</td>
</tr>
<tr>
<td>Heavy Metals</td>
<td>47-73%</td>
</tr>
</tbody>
</table>

The FilterCell™ technology can be utilized in temporary applications during land disturbing/construction activities or for permanent applications where native vegetation can be established to create a permanent organic vegetative filter designed into the existing landscape.

Typical applications include sediment and soluble pollutant control of stormwater and agricultural runoff. In addition, vegetated FilterCells™ reduce runoff velocity and pollutant levels flowing into surface waters, therefore decreasing soil erosion and increasing pollutant removal through trapping, sediment deposition, and biological plant uptake.

APPLICATION

The Filtrexx FilterCell™ system can be used for temporary applications during land disturbing or construction activities or for permanent applications where vegetation can be established to create a permanent organic vegetative filter that is designed into the landscape. Typical applications include:

- Pretreatment for temporary sediment detention ponds
- Post-treatment for temporary sediment detention pond discharge or emergency storm overflow
- Pretreatment for permanent storm water collection ponds
- Sediment and soluble pollutant control of storm runoff
- Sediment and soluble pollution filtration from contaminated effluent

Vegetated FilterCells™ can also be used to reduce runoff velocity flowing into surface waters. Reducing runoff velocity will decrease soil erosion and increase pollutant removal through trapping, sediment deposition, and plant uptake.

ADVANTAGES

- FilterCells™ are easily installed and can establish vegetation in difficult areas
- FilterCells™ can be easily designed and incorporated as one treatment in a treatment train approach to stormwater management
- FilterCells™ can be used to filter pollutants and infiltrate stormwater runoff in areas where stormwater may pass, collect, drain, or be stored
- FilterCells™ have the ability to bind and absorb soluble nutrients, metal, and hydrocarbons that may be in stormwater runoff, thereby reducing loading to nearby receiving waters
- FilterCells™ can remove pathogens and pesticides from storm runoff preventing pollution of receiving water bodies
- FilterCells™ can be customized to remove target pollutants from contaminated water, such as phosphorus and suspended solids

Incorporating FilterCells™ into the filter system will provide for more effective and efficient stormwater management.

REFERENCES


Conclusion

The primary function of the FilterCell™ filtration system is to remove sediment and soluble pollutants, such as metals, heavy metals, petroleum hydrocarbons, and pesticides from stormwater runoff or contaminated effluent water. By using organic matter and humus rich materials, the FilterCell™ system is able to chemically absorb pollutants rendering them less toxic and less available to animals and humans.

Filtrexx FilterCells™ can be injected with flowcells to allow for custom design to target specific pollutants in water and stormwater, thereby reducing their concentration and load exiting the system. The organic humus rich system is also designed to absorb large volumes of water thereby reducing mass loading of pollutants exiting the system. Flow diveters and filtration baffles also increase the flow path and reduce flow velocities which allows for increased settling of suspended solids, reduction of turbidity, and increased reaction time to absorb soluble pollutants. The result is systematic reduction of pollutants leaving the filtration system and ultimately migrating to sensitive receiving waters and wetlands.

The vegetated FilterCell™ system is effective at filtering pollutants from water and stormwater due to flow velocity reduction and physical trapping of pollutants by the vegetation. Vegetation can increase surface roughness which can reduce flow velocity. Large particles are typically removed in greater efficiencies than suspended particles through reducing flow velocity and constructing/maintaining vegetated filters. Many plants have the ability to trap excess nutrients and other pollutants trapped in the vegetation, while microorganisms can decompose and/or incorporate these pollutants into their biomass, making them less toxic to aquatic ecosystems. Organic matter supplied in GrowingMedia™ increases the diversity and population of microorganisms that can decompose and incorporate captured pollutants.

Maintenance is a key consideration, as sediment build-up will significantly reduce the ability of a vegetated FilterCell™ to remove pollutants from effluent or runoff water; however, unless sediment accumulation is extreme, FilterCell™ vegetation will continue to grow in and through deposited sediment.